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Abstract—Some recent elastic-plastic analyses of cracked specimens subjected to symmetric mode 111
loading are extended to include asymmetric loading and geometry. Solutions are given for arbitrary work
hardening behaviour in any specimen that is amenable to a linear elastic analysis. It is shown that asymmetry
has a major influence on the shape of the plastic zone, but does not affect the J-integral unil the loading is well
into the large scale yielding range. In particular the “plastic zone corrected” estimate of J, obtained by
elastically solving a problem for a crack longer than the actual one, is shown to remain a valid two-term
asymptotic expansion in the presence of asymmetry. The general results are applied to a crack at an angle toa
uniform stress field in a power law hardening material. The growth of the plastic zone is displayed graphically
for various hardening exponents and crack orientations. No other asymmetric solution is available, but values
of J are compared with those obtained from a fully plastic analysis in the symmetric case.

1. INTRODUCTION

Two recent papers have applied the method of matched asymptotic expansions to elastic—plastic
crack problems. Edmunds and Willis[1] generated solutions applicable to the longitudinal shear
loading of an elastic-perfectly plastic symmetric specimen. This analysis was extended by
Edmunds and Willis[2] to allow arbitrary work-hardening behaviour. The current paper further
extends the analysis to include problems in which the loading and geometry are not symmetric
about the crack plane. The previous results are special cases of those given here.

The method involves finding two expansions that are asymptotic to the required solution.
Both are power series expansions in a monotonically increasing loading parameter but they have
different regions of validity. The first, developed in Section 2, is valid in an “outer’ region away
from the crack tip and the second, developed in Section 3, in an “inner” region near the tip.
Unknown constants that appear in each expansion are determined in Section 4 by an application
of Van Dyke’s[3] “asymptotic matching principle”. The discussion of the solution, Section 5,
concentrates on its application to fracture mechanics; it being shown how asymptotic
expressions for parameters such as the extent of yielding or the J-integral can be found from
elastic solutions alone. To lowest order these expressions are the well known small scale yielding
results, the range of validity of which are extended by the higher order terms. These general
expressions are applied in Section 6 to the particular problem of a crack at an angle to a uniform
stress field in a power law hardening material. The growth of the plastic zone with the loading
parameter is displayed graphically for various crack orientations and levels of hardening. For the
particular orientation of the crack parallel to the plane of maximum applied shear the results are
compared with a fully plastic analysis. The dependence of various estimates of J on the applied
shear is displayed for two levels of hardening.

The formulation of the governing equations is identical to that given in [2], and also in Rice[4],
and so will only be summarised here. For the longitudinal shear deformation of the specimen
shown in Fig. 1 the only non-zero component of displacement is Us(x,, x-), and hence the only
non-zero stresses are o;; and o2. In this case the general constitutive relation is

=T 1) s (L.1)

where 7(v) is a given function relating the principal shear stress 7 = (a3 + 0/3;)'” to the principal
shear strain y = (y} + y%)"2 If the material is elastic-plastic the function r(y) satisfies

'r('y)=-’£y fory<wy, (1.2)
Yo

R0
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Fig. 1. The specimen geometry and loading.

where k and vy, are the initial yield stress and strain respectively. It will be seen that (1.1) defines a
“deformation” theory of plasticity which, it is hoped, is a reasonable approximation to an
“incremental” theory when the loading is monotonic. Apart from the constitutive law (1.1), the
solution must satisfy the equilibrium condition

9013 | 0023
Lo U 1.3
%, * X2 0 (13

and be compatible with the prescribed boundary tractions.
In the elastic region, (1.2) and (1.3) can be satisfied by requiring U, to be a harmonic function
of x,, x,. This can be conveniently expressed as

Us(xy, x2) = ayo Im {g(2)} (1.4)
where a is the crack length, as in Fig. 1, and g(z) is an analytic function of

X, +ix;
7=
a

(1.5)

In addition to this complex position variable it is convenient to define a complex strain variable
by

g=Y2"0 (1.6)
Yo

Application of the Cauchy-Riemann equations then shows that
£=¢'2), (L7
which can be inverted to
z2=f(§), say. (1.8)

In the strain plane, Fig. 2, the traction free crack faces map onto the v, =0 axis, the
elastic—plastic boundary onto a semi-circle of radius vy, and the outer boundary of the specimen
onto a, possibly complex, curve surrounding the origin.
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Fig. 2. The map of the specimen onto the strain plane.

2. THE OUTER EXPANSION

As in [1] and [2] the outer expansion is found by formulating and solving a boundary value
problem for g(z). The real part of g(z) on the specimen boundary follows from the prescribed
tractions and, as before, the yielded zone is modelled by a crack tip singularity. The difference
between this solution and that given in [1] and [2] is that the symmetry condition

Us(xy, x2) = = Us(xy, —x2) : 2.1

is no longer applicable. This means that the singularity can include negative integral powers of z,
as well as the negative half integral powers previously used. A sufficiently general form is thus

g(2)~—i(a,€’+ ase®+0(e") log (—z) — 2as€’ + a.e’ + 0(e”))z '
—i(ase*+ 0Nz —Hase®+ 0Nz +0(e")z7? asz->0 .2

where the a; are, as yet, undetermined and the loading parameter ¢ is defined as the ratio of the
maximum applied boundary stress to the yield stress, k.

Modelling the yielded zone by (2.2) leads to a boundary value problem for g(z) which can be
solved and differentiated to give the three term outer asymptotic expansion. This has the form

£=g'(2)=gl(2)e +igiz)(a,€> + a2€*) + g}z )€ + ri€”) + igi(2)as€” + gi(2) e’ + O(€”)
2.3)

where:

21(z)e is the linear elastic solution of the problem

g:(z) has a unit z7' stress singularity

—3/2

g4(z) has a unit z stress singularity

g4(z) has a unit z7? stress singularity

—5/2

g5(z) has a unit 27> stress singularity,
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and ig(z), g3(2), igi(z) and gi(z) are solutions giving zero boundary tractions.
As the inner limit of (2.3) will be used in the subsequent matching the small argument
expansions of g'(z) are introduced as

gizy=yuz iyt yuz P tivez +yisz?? .

guz)=z""+ i’}’zzz_m + vyt i‘Yz4Z”2+ Y252 on

gy2) =2+ vz Pt iyt ¥z

gu) =2+ ivaz Pt Yas. oo

g )=z sz for z > 0. (2.4)

It may be noted that, unlike the equivalent functions in [1] these gi(z) are given uniquely by the
solutions of elastic problems.

3. THE INNER EXPANSION

As in [2] the inner expansion is found by formulating and solving a boundary value problem
for the function f'(¢), defined by (1.8). The elastic region is represented by the area within the
dashed semi-circle in Fig. 2, and the curve representing the specimen boundary lies within a
distance of order yo¢ of the origin, since the boundary conditions imply ¢ = 0(¢) there. The
function f'(£) is consequently taken as analytic within the semi-circle, except at the origin where
a singularity is admitted to model the specimen boundary strains. The functional form of this
singularity is found by noting that it cannot contain terms such as €*£” or ie*£?, since £ is an odd
function of €, and that terms in £' are incompatible with the plastic region solution given below.
These considerations, together with the boundary condition Im {f'(¢)} = 0 when Re {£} = 0,lead to
the elastic region solution

z

f(€)=(B1€* + Bre* + B1e) >+ i(Bue’ + Bs€’)E > +(Bse* + Pre) ~* + iBs€’E ™ + Boe®E™°
+F(©)+0e) (1)

where the B; are, as yet, undetermined. As in [2] the function F’'(£) is analytic in the unit
semi-circle and is determined from conditions on the elastic—plastic boundary.

The determination of F'(¢) follows[2], and hence Rice[4], in that a potential function
¥(y13, v23) is introduced such that the plastic region co-ordinates and displacements are

.
==, i=1,2 3.2
P i (3.2)
and
Us(x1, X2) = yisx; ~— ¢ + const. (3.3)

respectively. This formulation automatically satisfies compatibility and the equilibrium condition
becomes [4]

T(y) 3% 1oy 1 9%
—_—r =L+ 5 —Z = 3.4
yr'(y)8y® vy ay v’o¢’ G4
where (y, ¢) are polar co-ordinates given by
Y23 — iYu =Y e (3.5)

and r(vy) is the constitutive relation defined in (1.1). The crack surfaces, where x, =0 and y,, =0,
correspond to ¢ = *(7/2) and hence, from (3.2),

W _0 wheno = :’5’. (3.6)

¢
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Solutions of (3.4), subject to (3.6), are now developed by separation of variables to give

¥=3 Di(y)sin(2k ~ D + 3 Difi(y)cos 2. G7)

It will be noted that, unlike the solution given in [2] and {4], cosine terms are included in (3.7).
Substituting (3.7) into (3.4) shows that f.(y) and f%(y) satisfy

T('Y) " l 1 _ . 2_]_ —

e N+ fin) = Gk = 17 5 () =0 (3.8)
and

T P NPTER I =

respectively. The conditions
filyd =fi(y)=1 and fi(=)=fI'(x)=0 (3.10)

are imposed on (3.8) and (3.9) to normalise the functions and ensure that the strain singularity lies
at the crack tip.

The co-ordinates of the elastic—plastic boundary are found by substituting (3.7) into (3.2) and
setting y = yoe™. This gives

5=ty = S (5 DRk~ 1+ firol €27+ 2K = 1= wfial )
+13 DHIZk + 7ol (o] €™~ 2K = yaft (vall %)), 3.1

A second expression for these co-ordinates is obtained from (3.1) by performing a power series
expansion of F'(£¢) and setting ¢ = e, The two expressions have coefficients of e** equated and,
as in [2], the D’s and F'(¢) are determined to a certain order in €. Substituting the result into (2.1)
gives

Z=(Bif 7+ BiCE* + (Bl > — BCYE)E  + (B2 T2+ Bsb ™ + B2C + BsCa£)e*
+ i(Bs§_3 + Bsf_s - BsCH¢ - Bacgfs)fs

+ (Bl 2+ BrE T+ Bob T+ BiCi + BrCoE7 + BoCEY)e® + 0(e) (3.12)
with
Ci = (2k = 14 yof l(yo)(2k — 1= yofilvo))

and

= 2k + yof ¥ (Yo 2k = Yof ¥ (70)). (3.13)

Equation (3.12) can be iteratively inverted to give the required expansion of £(z) that is valid in
the inner region. The resulting expression is lengthy and will not be given explicitly.

4. MATCHING

So far two expansions that are asymptotic to the unknown solution have been obtained. The
outer expansion (2.3), gives the first three terms of £(z) and is valid when z ~ 1 and the inner
expansion (3.12), gives the first five terms of Z(£) when z ~€*. These are matched by first
iteratively inverting (3.12) to give five terms of £(z) and then, as in [1] and [2], equating the
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m-term outer expansion of the n-term inner expansion to the n-term inner expansion of the
m-term outer expansion. In this case m = 3 and n = 5 and, after lengthy algebra, there results:
Bi=7i

Bs=—2yuyh

Be=2yuyi~ 37%27’?:

Bs =4yyhi — 8ynyuyh - 2vurh

Bo=2visy 1+ 5yhvh — Wyusvhyh — 10y eyeyh + Svhyh

a3 = %Cﬂ/?:

a; =0

B:= Ci(ynyhi+yuyi)

Bs=—Ci2yuysyii + 2ynyuyhi+ 2ysy i+ Yaey i)

Br= Cilyssyhi+3yisyhi — 37%2?33?71 =3yhyeyh + 3ynynyict 3yhyhi — 6ynyayh

=3y ¥h)
as =3C vl
as=—C¥yuyh
as= CHyhyhi +3C 6y + Synyh)
a,=0
B:=CHQ2yhynyh + 2ynyayi + 27027y + 2y yuyl)
HICAHTvhyh + Hynynyh + Svhyh + 3vssyh + 2yssyh + 3vasvio) 4.0

Equation (4.1) gives the previously undetermined singularity coefficients, the a; and 8, in
terms of vy, C, and C¥. The v, are defined from linear elastic solutions for the specimen and C,
and C% are given, in principle, by solving (3.8) and (3.9) with the appropriate constitutive relation.
The values of a; and 8; thus found can be substituted into (2.3) and (3.12) to give asymptotic
solutions valid in the outer and inner regions. If the intermediate region were of interest a
uniformly valid composite expansion could be constructed by the methods discussed in [3].

5. APPLICATIONS TO FRACTURE MECHANICS

As noted in the introduction the discussion of the solution completed in Section 4 concentrates
on applications to fracture mechanics. In particular the solution may be characterised by the size
and shape of the yielded zone and the path independent energy integral J. The first of these is
included because the yielded zones display an interesting asymmetry and the second because of
recent interest, e.g. Begley and Landes[3], in J as a general yielding fracture criteria. General
expressions for these are developed and the case of a power law hardening material is considered
in detail, it being shown how the crack tip strain singularity is essentially unaltered by the
presence of asymmetry.

The co-ordinates of the elastic-plastic boundary are found from (3.12) with 8; given by (4.1)
and £ = e, The resulting five term expansion is lengthy and so only the first three terms are given
here. Thus, to three terms,

ff&?. = ’Y%! (3-2“ + 63)62 + Zi‘)‘xz‘yzzs(cf e - edid’)GB

+F(QRyuyhi=3yhyi) €+ C. ) + Cilynyh + yori) (€77 + C))e* + 0(e’). ¢.n

The maximum extent of this zone is found by equating the derivative of |z| with respect to ¢ to
zero. The resulting value is
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2 2 2 2
[Zlmax = Y31+ €)e* + [A%L BCt+1+C,C+3C,y+22Y0 oy 1y

2C,(1+Cy) (1+C)
H(QRyuyh =3y + C)+ Ci(1+ C)ysyh + vxsv?n))] €'+ 0(e) (5.2)
which occurs when
é =_zLa(scf+1+C.C¥+3cl)e+0(52). (5.3)

The first terms of (5.1) and (5.2) are the well known small scale yielding solutions associated with
a stress intensity factor of Ky = (27wa)yuke.

As in [2] the path independent energy integral J is calculated from the outer solution (2.3). The
expression used is

J=Im {"7—"" § & dz}, (5.4)
2 Jr
given by Rice and Budiansky[6), and the contour T is taken as the circle

(5.5)

Performing the substitutions is is found that only the z ! term of £2 contributes to the integral and
hence J can be evaluated in terms of the y; defined in (2.4). The result is

J = makyo [ yhet+cilynyh t Yuyn)e

ok
+ ("j‘ (7‘Y§3‘Y?1 + 11’)’13733‘)’?1 + 57?37:1 + 3')’55‘)’?1 + 2‘)‘35‘)’?1 + 37157?1)

+ C?(27¥2‘Y:3‘Y?1 + 2‘)’127«’)’?1 + 2')’%2‘)’13‘)'?1 + 2712‘)‘147?1)) e+ 0(58)] . (5.6)
As before, the first term of (5.6),
J = makyoyhi€?, 5.7

is the small yielding result and the second and third are systematic refinements that take account
of the yielding.

The above expressions can be used to investigate the effect of asymmetry on fracture criteria.
It can be seen immediately that the small scale yielding approximations depend only on v;,, and
hence are unaffected by asymmetry which involves the coefficients vz, .4, €tc. (5.1) shows that
these asymmetric coefficients affect the elastic-plastic boundary co-ordinates by a term of order
€, but (5.2) shows that the effect on the maximum extent of yielding is of order €*. These
comparatively strong effects are in contrast with those for the J integral, (5.6), where asymmetry
has no influence until the term of order €°. It was shown in [2] that a “plastic zone correction”
obtained by solving a linear elastic problem for a crack of length a + r,, r, being given by

r, = aCyyhe?, (5.8)

provides a two term asymptotic expansion for J. This result can be seen to remain valid in the
presence of asymmetry since neither r, nor the first two terms of (5.6) are affected. Finally, it may
be noted from (5.1) that the values of Z|g» are not equal on the two crack faces, i.e. when
¢ = *(m/2). This means that the analogue of crack opening displacement used in [2], where the
relative displacement of the plastic zone ends was considered, ceases to be meaningful.

It is also of interest to compare the general expressions (5.1) and (5.6) with those obtained
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from a modified boundary layer approach. In this the problem is first solved elastically to find v,
and vy, and then a semi-infinite crack in an infinite body is considered. This is subjected to the
remote boundary condition

E-ynz e +iy e asz-® (5.9)

and an elastic-plastic calculation is performed. The resulting plastic zone and J-integral are taken
as approximations to those that would be found in an elastic-plastic solution of the original
problem. For general hardening behaviour the boundary layer problem can be solved, up to a
certain order in ¢, by a method similar to that of Section 3. As expected the results are given by
(5.1) and (5.6), except that now ., and v, are the only non-zero vy, This means that the modified
boundary layer approach gives the correct €* term in the elastic-plastic boundary co-ordinates,
but the incorrect € term in the co-ordinates and in the J-integral. It can also be seen that including
the y; term in (5.9) would not give the * terms correctly, since this would not include the
non-linear interaction between the elastic and plastic regions represented by the yi term.

Before discussing the behaviour near the crack tip it is convenient to restrict attention to
materials of the power law hardening type. In these 7(y) is given by

m(y)=k (;’;) Y<7vo

N
=k(__3i) ) 7>70,

(5.10

N being referred to as the hardening exponent. When (5.10) applies (3.8) and (3.9) are
homogeneous and can be solved, Rice[4], to give

fn=(2) " and fr=(2)™ (5.11)
with

e = {U5E 1 k- ) - SR
and

pt= {51 4N)+4k2N}m—(—l—_2—N-)-. (5.12)

Substituting (5.11) into (3.13) gives

2'(_1—“'(

2k-pk

Co= %k +ut

and Ci= {5.13)

The stress-strain law (5.10) incorporates two interesting limits, If N =0 then u, =ut=0,
C. = C%=1 and an elastic—perfectly plastic material is described. If N =1 then . =2k -1,
u¥ =2k, C.=C%=0 and the linear elastic solution is recovered.

The plastic region solution in a power law hardening material can be found by substituting
(5.10) and (3.7) into (3.2). There resuits

‘X1+iX2— -“ntl:

(S(Zk—lw.(g;) cos (2k - g — 3 2sz( )_“;sin2k¢)

k=1

<2 [

(2 -mD(Z) Tsinek-16+ 3 #tDi‘(;’:—,)—“: cos 2k4) | (5.14)
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If the material is not perfectly plastic, i.e. N#0, then p, < itess, o <p¥. and u, <* and so
for vy > v, the right side of (5.14) is dominated by the D, terms. This means that the physical
co-ordinates very near the crack tip are

0.

s 44¢1)1 Y ~N .
-xitix;=¢ S5 P [cos ¢ —iN sin ¢] (5.15)
which imply a dominant strain singularity of the form

Yis{ _ N+1),, NN+, —1/(N+1) 2 2 (12 g THIAN+D) —sin ¢}
{723} (-D») Yo r [cos* ¢ + N?sin® ¢] { cos ¢ " (5.16)

where r is the distance from the crack tip. The coefficient D, was found in Section 3 to be

-2Yoa

D=1

[Bi€®+ Bre* + B16°1+ 0(e®) (.17

with yofi(y0) = —N as the material is power law hardening. Substituting for 8; from (4.1) it is seen
that the only effect of asymmetric loading on crack tip conditions is a third order change in the
magnitude of the strain singularity—the angular dependence being unaltered. It is of interest to
note that the J integral can be calculated from the singular field (5.15); as expected the result is
the same as (5.6) which was found from the outer solution. In particular it may be noted that

=2J

Di=Tri+ N

(5.8

to the order retained and, by implication, to all orders.

If the material is elastic-perfectly plastic the above results do not apply since each term of
(5.14) then contributes to the dominant strain singularity. In this case the plastic region solution
can be written as

X+ ix, = —ey ! [ > (2k — 1)D, cos 2k —1)¢ — >, 2kD*¥ sin 2k¢] (5.19
k=1 k=1
which implies strains

{zz} =-r" [2 (2k — )Dy cos (2k — )¢ —2 2kD* sin 2k¢] { ‘CS(;;‘ i}, (5.20)

It can be seen from (5.19) that the polar angle in the strain plane ¢, can be equated to the polar
angle at the crack tip in the physical plane, 6. Hence (5.20) can be written as

¥13] _ YoR(6) f—sin 8
{723} - Y { cos 0} (5:21)
where
R(6)= —yl [ S @ - 1)D, cos 2k —1)8 — 3, 2kD¥ sin 2k0] (5.22)

is the distance from the crack tip to the elastic—plastic boundary at an angle . The maximum
value of R(8) is given by (5.2) as

R(o)mnx =a [2')’%152 + (6‘)'13')'?| "‘4‘)'?2')’%1 + 2‘)’33'}’:1)5‘ + 0(66)] (522)

occurring when
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0 = —4y.e +0(e?), (5.23)
and hence the strain singularity implied by (5.21) is not symmetric about the crack plane. It may

be noted that the expression y2€ appearing in (5.23) can be found from the linear elastic solution
of the problem. It is simply the normalised stress parallel to the crack acting at the tip.

6. A CRACK AT AN ANGLE TO A UNIFORM FIELD

The preceding results are now applied to a crack of length 2a perturbing a uniform stress field
in a power law hardening material, as in Fig. 3. The functions g'(z) defined in Section 2 can be

o
L

I

Fig. 3. A crack at an angle to a uniform stress field.

found by inspection to be

gi(zy=(z +1)(z*+22) " cos A +isinA
gi(z) =2z + 1)z + 22)™"
gM2)=2v2(z + 1)(z*+22)"

gz) =4z + (2" +22)7"

n

8Y(2) = 4V2z + D2 +22) "+

(z+1)(2*+22)" 6.1)

where A is the angle between the crack and the plane on which the remote shearing stresses are
maximum. The functions (6.1) are expanded and compared with (2.4) to give

1 . 3 =
Y= /08 A YaTsind yn=gopcesh ye=0 y=plpcosh
1
Y22=0 723:5 Y24=0 ')'25=—%
1 0 Y=o
Y=y Y=V Ys= T35
Yas Yas 4

yss = — ;2- 62)
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Assembling the various results it can be seen that once the hardening exponent N, the crack
orientation A and the remote stress ke are known the solution is determined.
The shape of the plastic zone for various values of N, A and € is shown in Figs. 4 and 5. These

=07

g=07

«— a —>
Fig. 4. Plastic zone shapes for various loadings and hardening exponents when A = 7 /8.

are obtained from eqn (5.1) with the lengthy terms in €’ and €® included. It is anticipated that, as
in [1] and [2], the asymptotic expressions provide reasonable approximations when load levels
are less than 75% of those needed for general yielding, which in this case occurs when € = 1 along
a slip band at an angle of —A to the x, axis. The onset of breakdown of the approximation can be
seen in the irregular behaviour of the elastic—plastic boundary just above the crack tip.

This effect is further illustrated in Fig. 6 where a sequence of approximations for the N =0,
A = /4 case is shown. The small-scale yielding approximation (n = 1) displays no asymmetry
and is noticeably in error beyond e ~0.3. The modified boundary layer estimate (n =2) is
obtained from the first two terms of eqn (5.1). It shows asymmetry, but develops unrealistic kinks
beyond € ~0.5. The higher order approximations (n = 3, 4, 5) successively defer this unlikely
feature to higher values of ¢, the approximation n = 5 showing evidence of breakdown at € ~ 0.7.
(The smooth behaviour of the approximation for n = 4 is fortuitous and does not occur for other
angles A).

If the crack is parallel to the plane of maximum shear, i.e. A = 0, the results may be compared
with those of Amazigo[7} who gave a fully plastic solution to the problem. In the current notation
Amazigo showed that, for the constitutive law

To(2Y
X (Yo) for all v, 6.3)
the physical co-ordinates very near the crack tip could be written as
. i 2J ( y)_” .
—_— = o___— (L -
X —ixa=¢e 22k (17 V) \7 [cos ¢ —iN sin ¢] 6.4)
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ErO7

N= O3
=06

I 1
o
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Fig. 5. Plastic zone shapes for various loadings and hardening exponents when A = # /4.

€~ 07 net

&06 small scale yielding
approximation

n=2

modited boundary
layer approximation

n=3

ne4

“—

Fig. 6. Plastic zone shapes, for no hardening and A = /4, when different numbers of terms are included in
the sum.
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Fig. 7. The variation of J with applied load for an edge cracked plane of highly hardening material
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Fig. 8. The variation of J with applied load for an edge cracked plane of a non-hardening material (N = 0).
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with J/ar.y. a known function of N. The equivalent result in the elastic-plastic case can be
found by substituting (5.18) into (5.15) to give an expression identical to (6.4). This means that the
only differences in crack tip conditions arise from the coefficient of the singularity, J. The two
expressions available for J are approximations to an exact elastic-plastic result with different
ranges of validity. Amazigo’s fully plastic result is a good approximation when the yielding is
fully developed, and the asymptotic result, (5.6), is a good approximation when yielding is
confined to a small area near the crack tip. The two results are displayed in Figs. 7 and 8 where J
is plotted against the remote loading for two values of the hardening exponent.

In the perfectly plastic case shown in Fig. 8, the fully plastic solution of Amazigo degenerates
into the vertical asymptote at € = 1.0. It has also been possible to include an exact elastic
perfectly plastic result, obtained from Rice[8]. These figures show that the small scale yielding
approximation begins to break down at —40% of general yielding, the plastic zone corrected
result at ~60% and, in the N =0 case, the three term result at ~75%. It may also be noted that
any reasonable interpolation scheme between the asymptotic result and the fully plastic result
would lead to small errors occurring over a restricted load range.
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